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Abstract: The first synthesis of 10 , the pyrrolo[2,1-f1{1,2,4]triazine C-nucleoside congener of adenosine is described.
The key intermediate ribofuranosyl pyrrole 4 is obtained by the direct C-ribosylation of pyrrolemagnesiumbromide with 2,3,5-tri-
O-benzyl ribose followed by an acid-catalyzed dehydration. Vilsmeier formylation of 4 followed by N-amination and CHO —> CN
conversion affords N-amino nitrile intermediate 7 which can be cyclized with formamidine acetate to the blocked title compound 9.
Hydrogenolytic debenzylation completes the synthesis. In vitro growth inhibitory activities of 10 against leukemic cell lines (0.8
- 15 nM) are comparable to those of 9-deazaadenosine.

As part of our program directed towards the design and synthesis of novel purine-like C-nucleosides of
potential biomedical interest, we recently initiated the investigation of a new class of analogues where the purine
moiety is replaced by the pyrrolo[2,1-f][1,2,4]triazine system (also referred to herein as 4-aza-7,9-dideaza
purine). Our interest in such analogues was prompted by, among other considerations, the considerable
similarity between the computer-generated molecular electrostatic potential (MEP) maps of adenosine and of its
pyrrolo[2,1-f][1,2,4]triazine congener when plotted in the plane of the base. As a preliminary to the
investigation of this new ciass of C-nucleosides, we described recently 1 a simple synthetic approach to several
4-mono- and 2.4-difunctionalized pyrrolo[2,1-f][1,2,4]triazine derivatives which are also new analogues of
the common nucleic acid purine bases. The developed method was expected to be amenable to the synthesis of
the corresponding C-nucleosides and relies on the utilization of either hydroxylamine-O-sulfonic acid (HOSA) 2
or O-mesitylenesulfonylhydroxylamine (MSH) 3 to bring about both N-amination and conversion of CHO —
CN of appropriately substituted 2-pyrrole aldehydes. We wish to report herein its application to the synthesis of
the adenosine analogue 10.

We had envisaged the prerequisite intermediate for this synthesis to be a 5-ribosyl pyrrole-2 aldehyde such
as § or, alternatively, its unformylated precursor 4. Maeba et al. had previously reported the synthesis of the
2,3,5-tri-O-benzoyl- and 2,3-0-isopropylidene- derivatives of § as well as the fully unblocked ribofuranosyl-
pyrrole 2-carboxaldehyde.# These authors also reported the synthesis of 2-(B- and o-D-ribofuranosyl) pyrrole.5
Though all were deemed suitable for our purpose, they were obtained by fairly lengthy routes involving
oxidation of a 2-ribosylated furan or a 5-ribosylated 2-furfuryl alcohol followed by treatment of the products
with an appropriate monoamine. We opted for a shorter approach involving direct ribosylation of the pyrrole
ring based on recent studies of the reaction between indolylbromomagnesium salts and protected furanoses
which showed that solvent effects played a critical role in determining the regioselectivity of N- vs C-glycosyl-
ation, 6 with C-alkylation becoming almost exclusive with the use of CH2Clz, Extension of these studies to the
direct C-heteroarylation of acyclic and cyclic sugars with pyrrole 7 had further demonstrated the possibility for
good regio- and stercoselective control.
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(i) CH,Cl,/0°C; (ii) CF;COOH; (iii} POCl;-DMF /0 °C; (iv) O-Mesitylenesulfonylhydroxylamine,
NaH / THF /0 °C; (v) HOSA, KOH / Dioxane-H,0 /0 °C; (vi) Formamidine acetate, EtOH / Reflux;
(vi)) Formamidine acetate, DMA / 140 °C; (viii) KyCO3;/MeOH; (ix) 10% Pd/C, Hy, AcOH.

Reaction between 2 8 and pyrrolemagnesium bromide 7-9 1 (5 equiv.) in CH2Clz at 0 °C for 1 hr.
followed by quenching with aqueous NH4C1 afforded a mixture of products containing alditolylpyrrole 3 .
Without isolation, 3 was subjected to an in sifu acid-promoted dehydrative annulation to 4 by addition of
CF3COOH. Thin layer chromatography indicated that the reaction was complete after 1 br. at room temperature,
In initial experiments, partial chromatographic separation of the products indicated a mixture of both C- and N-
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nucleosides, the complete characterization of which was rendered difficult by their slow degradation throughout
the separation procedures. Since we expected the inductive effect of the carboxaldehyde function in
intermediate § to reduce susceptibility of these pyrrole derivatives to oxidation and other degradative processes,
no further attempts were made to isolate 4 in pure form at this stage. Instead, a direct Vilsmeier formylation of
the aromatic nucleus was carried out by the dropwise addition of the crude product containing 4 to a solution of
POCI3 (1.8 equiv.) in DMF at 0 “C followed by quenching with sodium acetate. The major product, pyrrole
aldehyde S, was isolated by flash chromatography on silica gel [ethyl acetate (8%-15%) in hexanes] (26 %
yield from 2). The 1H NMR spectrum of the material obtained from the major fractions containing § indicated
also a small amount of an isomeric product, presumably the a-anomer. A crystalline sample of 5 10 was
obtained by cooling concentrated clution fractions; mp 103-106 °C. X-Ray crystallographic techniques
established its identity as the desired f—anomer and revealed a strong hydrogen bonding between N1-H and O-
5'.

For the further claboration of aldehyde § to the desired N-amino nitrile intermediate 7, we found it
advantageous to carry out first the N-amination of § with MSH followed by conversion of the aldehyde
function of crude intermediate § to a nitrile with HOSA. Generation of the anion of § with NaH (2 equiv.) in
THF and treatment with MSH 32 (1.1 equiv.) at 0 °C for 45 minutes led to a complete conversion to §. Without
extensive purification, the crude product (6, in dioxane-water, 3:2) was treated with HOSA (3.5 equiv.) for 2 hr
at 0 °C and the resulting oxime -O-sulfonate intermediate was degraded in siftu by the addition of a cold
dioxane-water (1:1) solution of potassium hydroxide. Crude N-amino nitrile 7 was isolated by standard
extractive procedures and used as such in the next step.

Conversion of 7 to the blocked adenosine analogue 9 by treatment with formamidine acetate (10 equivs.)
in boiling ethanol (23hr ) was moderately successful, affording the desired product 9 in 27 % yield together
with a small amount of the N-formamidino intermediate § (7 % yield). These were readily separated by
preparative TLC (CHCl3-MeOH,:96:4). As expected from our earlier studies,! intermediate 8 could be readily
converted to 911 ( 58 %) by treatment with base (K2C0O3) in MeOH for 4 hr at ambient temperature. The
relatively modest yields obtained in the direct annulation of 7 —> 9 with formamidine acetate in boiling ethanol
stand in sharp contrast with the much higher ones (93%) we had obtained in the conversion of a 4-ribosylated 3-
amino-2-cyano pyrrole to the corresponding pyrrolo[3,2-d]pyrimidine congener of adenosine (a 9-
deazaadenosine derivative) under similar conditions 12 and may reflect the much lower nucleophilicity of the N-
NH2 group in 7. A better conversion of 7 —> 9 was ultimately achieved by treating 7 with formamidine acetate
(10 equivs.) in DMA for 1.5 hrat 140 “C. Isolation of the product by flash chromatography on silica gel
(CHCI3-MeOH, 99.5:0.5) gave 9 in 45 % yield. The synthesis of 4-amino-7-(8-D-ribofuranosyl)pyrrolo[2,1-
f[1,2,4]triazine (10 ) was completed by the hydrogenolytic debenzylation of @ over Pd/C (10 %, Degussa
type) in AcOH as solvent and with H2 at atmospheric pressure for 21 hr to give 18 in 46 % yield, mp (water)
210-214 °C.13,14

The preliminary in vitro data summarized in Table 1 indicate that 4-aza-7,9-dideazaadenosine 10 has
pronounced growth inhibitory activity against several mouse and human neoplastic cell lines comparabie to that
of 9-deazaadenosine.

Table 1
In Vitro Antimumor Activity (ID50 in tM) of 10 and of 9-Deazaadenosine
L1210-C2 S180 HL60-JG
10 0.0035 0015 0.00082
9-Deazaadenosine 0.0014 0.014 0.00064

Such biological activities, presumably a direct consequence of the antimetabolic properties of 10, support
our initial premise that MEP may serve as a useful tool for the selection of potentially active structural analogues.
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